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Introduction 

Tennis is a game rich in dynamics. The tennis ball is constantly acted upon by three forces 

(Gravitational, Drag, Lift) while it is in the air and three forces (Gravitational, Normal, Friction) 

while it is bouncing. The rotational speed of the ball affects both how it moves in air and how it 

interacts with the ground. There is various research on the aerodynamics of a tennis ball (Štěpánek) 

(Cross, “Ball Trajectories”) (Alam) (Metha), and three main papers regarding the bounce of a 

spinning ball (Garwin) (Cross, “Bounce of a Spinning Ball”) (Brody). Rather surprisingly, no study 

combined these two parts and inspected the distance that a tennis ball travels until its second 

bounce. There are two main reasons for investigating the effect of rotational speed of a tennis ball 

on the horizontal distance that it travels until its second bounce. The first reason is that the 

relationship between the rotational speed of the tennis ball and the horizontal distance that it travels 

until its second bounce is complex and the answer can’t be found intuitively. The second reason is 

the lack of research investigating this relationship.  

 

In this investigation, a mathematical model will be formed by combining and expanding upon 

previous theoretical models regarding tennis ball’s movement in air and its collision with the 

ground. This mathematical model will be turned into code using iterative methods such as Euler 

and Runge-Kutta approximations to make predictions. Then the predictions will be compared with 

the experimental results to see the validity of the mathematical model.  

 

Research Question: How does the rotational speed (Hz) of a tennis ball affect the horizontal 

distance (m) that it travels until its second bounce, when it is launched parallel to the ground from 

a height of 1 meter with a speed of 5𝑚𝑠!"? 
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Mathematical Model 

Motion of the tennis ball is divided into two parts: the movement in air and the bounce (Figure 1). 

 

 

 

 

 

 

 

 

 

The Movement in Air 

There are 3 forces acting on the ball while it is in the air. Gravitational Force (𝐹$) perpendicular to 

the ground, Drag Force (𝐹%) antiparallel to the direction of movement, and Magnus Force (𝐹&) 

perpendicular to the direction of movement. 

 

Gravitational Force is caused by the attraction of the mass of Earth and mass of the ball and can be 

written as  𝐹$ = 𝑔 ∗ 𝑚'()) ( 𝑔 = 9.81𝑚𝑠!*) 

 

Drag Force is caused by the difference in velocity between a solid object and a fluid (Hall). The 

origin of the force is the collisions between the molecules in the fluid and the object. The formula 

for it is 𝐹% =
"
*
∗ 𝐶% ∗ 𝐴 ∗ 𝑝	∗ 𝑣* (where 𝐶% is the drag coefficient, 𝐴 is the cross sectional area, 

𝑝	is the density of the medium, and 𝑣	is the difference in velocity) (Cross ,“Ball Trajectories ” 370). 

Figure 1: The Trajectory of the Tennis Ball 
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Magnus Force is caused by the difference of pressure around a spinning object. For example, for a 

tennis ball with backspin, the magnus force is directed upwards (Figure 2). The velocity at the 

bottom of the ball going with backspin is v+wr while the velocity at the top of the ball is v-wr. 

(Where v is velocity, w is angular velocity, r is radius) Therefore, the air molecules at the bottom 

of the ball are getting slowed down more than the air molecules at the top of the ball. The slower 

air creates a higher pressure according to Bernoulli’s Principle and a lift force forms. When the 

direction of the spin reverses, the direction of the Magnus Force reverses as well. The formula for 

the lift force created by the Magnus Effect is very similar to the drag force formula 𝐹& = "
*
∗ 𝐶+ ∗

𝐴 ∗ 𝑝	∗ 𝑣* (the only difference being 𝐶+, the lift coefficient) (Cross ,“Ball Trajectories ” 371) 

 

 

 

 

 

 

 

 

The equations for the drag coefficient	𝐶% and lift coefficient 𝐶+ of a tennis ball were found to be  

𝐶% = 0.508 + "
(*../01 !.#$%

('() )+.,
)-.!

                𝐶+ =
"

(*./**1-.$.#
('() )

)
   

by experimental data collected in an open-type aerodynamics tunnel at the Research Institute for 

Aeronautics in Prague (Štěpánek 140). (v is velocity, w is angular velocity, r is the radius of the 

tennis ball)  

 

The model for the movement in the air was expanded from Cross’ Ball Trajectories 

Figure 2: Rdurkacz. Sketch of Magnus Effect with Streamlines and 
Turbulent Wake. 2017. Wikimedia Commons, the Free Media Repository 
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The Case for the Ball with the Backspin: 

When the ball is rising, it forms an angle 𝜃 with the ground (Figure 3). The Gravitational Force is 

always perpendicular to the ground. The Drag Force is always antiparallel to the direction of motion 

while the Magnus Force is always perpendicular to it. 

 

 

 

 

 

 

 

 

From the free body diagram of this movement (Figure 4), equations of the net force on the ball 

can be derived by dividing the force vectors into their x and y components. 

 

In the horizontal direction: 𝑚 34/
35
=	−𝐹& 	𝑐𝑜𝑠(90∘ − 𝜃)	− 𝐹%	𝑐𝑜𝑠(𝜃)	 

In the vertical direction: 𝑚 340
35
=	𝐹& 	𝑠𝑖𝑛(90∘ − 𝜃)	− 𝐹%	𝑠𝑖𝑛(𝜃) − 𝐹$  

 

Simplifying to get: 

 

𝑚 34/
35
=	−𝐹& 	𝑠𝑖𝑛(𝜃) 	− 𝐹%	𝑐𝑜𝑠(𝜃)		  

𝑚 340
35
=	𝐹& 	𝑐𝑜𝑠(𝜃) 	− 𝐹%	𝑠𝑖𝑛(𝜃) − 𝐹$   

 

Figure 3: Tennis Ball with 
Backspin Rising 
 

Figure 4: Free Body Diagram of a 
Tennis Ball with Backspin Rising 
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The Case for the Ball with the Topspin: 

When the ball is rising with a topspin, every force is the same with the backspin except the 

direction of the Magnus Force is reversed (Figure 5). 

 

 

 

 

 

 

 

From the free body diagram of this movement (Figure 6), equations of the net force on the ball 

can be derived again by dividing the force vectors into their x and y components. 

 

In the horizontal direction: 𝑚 34/
35
=	𝐹& 	𝑠𝑖𝑛(𝜃) 	− 𝐹%	𝑠𝑖𝑛(90∘ − 𝜃)	 

In the vertical direction: 𝑚 340
35
=	−𝐹& 	𝑐𝑜𝑠(𝜃) 	− 𝐹%	𝑐𝑜𝑠(90∘ − 𝜃) − 𝐹$  

 

Simplifying to get: 

𝑚 34/
35
=	𝐹& sin(𝜃) − 𝐹%	 cos(𝜃)  

𝑚 340
35
=	−𝐹& 	𝑐𝑜𝑠(𝜃) 	− 𝐹%	𝑠𝑖𝑛(𝜃) − 𝐹$   

 

Inserting 𝐹% =
"
*
∗ 𝐶% ∗ 𝐴 ∗ 𝑝	∗ 𝑣* , 𝐹& = "

*
∗ 𝐶+ ∗ 𝐴 ∗ 𝑝	∗ 𝑣*,	𝐹$ = 𝑔 ∗ 𝑚,  

𝑐𝑜𝑠(𝜃) = 4/
4

, 𝑠𝑖𝑛(𝜃) = 40
4

 for both the topspin and backspin equations to get 

 

 Figure 5: Tennis Ball with 
Topspin Rising 
 

Figure 6: Free Body Diagram of a 
Tennis Ball with Topspin Rising 
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Topspin: 

𝑑𝑣8
𝑑𝑡 =

𝐴 ∗ 𝑝 ∗ 𝑣
2 ∗ 𝑚 (𝐶+ ∗ 𝑣# − 𝐶% ∗ 𝑣8)																					(1) 

𝑑𝑣#
𝑑𝑡 = 	−

𝐴 ∗ 𝑝 ∗ 𝑣
2 ∗ 𝑚 (𝐶+ ∗ 𝑣8 + 𝐶% ∗ 𝑣#) − 𝑔								(2) 

 

Backspin: 

𝑑𝑣8
𝑑𝑡 = 	−

𝐴 ∗ 𝑝 ∗ 𝑣
2 ∗ 𝑚 (𝐶+ ∗ 𝑣# + 𝐶% ∗ 𝑣8)																(3) 

𝑑𝑣#
𝑑𝑡 =

𝐴 ∗ 𝑝 ∗ 𝑣
2 ∗ 𝑚 (𝐶+ ∗ 𝑣8 − 𝐶% ∗ 𝑣#) − 𝑔												(4) 

 

These equations are valid for the ball falling down as well since the 𝑣#	becomes negative and 

changes the direction of the drag and magnus forces. 

 

Since the rate of change of velocity and the initial velocity is known, the velocities throughout the 

movement in air are calculated by the fourth-order Runge-Kutta method (Press 710-711) and the 

positions of the ball are calculated using the Euler’s method (Wazir 1463-1466). 

 

The limitation of this model is that there is no algebraic description of how rotational speed of a 

tennis ball changes while it is moving in air. The fuzz of the tennis ball makes its surface rough 

and porous (Metha, “Review of Tennis Ball Aerodynamics” 14). Therefore, the flow around the 

tennis ball is always turbulent (Cross, “Sports ball aerodynamics” 2) and the only algebraic 

description of viscous torque on a sphere is derived for low Reynolds numbers (Lei 1). The validity 

of this assumption will be investigated. 
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The Bounce 

Out of three theoretical models (Garwin) (Cross, “Bounce of a Spinning Ball”) (Brody), Brody’s 

was chosen because Garwin’s model assumes that the ball is perfectly elastic (which is a limited 

description of a tennis ball1) and Cross’ model can only predict the outcome if a measurement of 

the bounce was made before2. Brody’s model assumes that the ball does not deform during the 

bounce, the normal force acts through the center of the ball, the ball does not slow down when it 

rolls, and neglects gravitational force.  

In this investigation, the mathematical model expands upon Brody’s model by not neglecting 

gravitational force, solving for angular velocity, analyzing one more topspin case, and analyzing 

the bounce of a ball with backspin. 

 

The motion of the ball is divided into vertical and horizontal. In the vertical direction, there are 

two forces acting on the ball: Normal Force (𝐹9) and Gravitational Force (𝐹$).  

Since the ball’s acceleration is pointed upwards, the net force 𝑚 340
35
= 𝐹9 − 𝐹$  

and therefore 𝐹9 = 	𝑚𝑔	 + 	𝑚 340
35

  (this description of the normal force will be used later) 

 

In both cases the velocity of the ball after the bounce is determined by a constant coefficient of 

restitution3 (𝑒#) . Coefficient of restitution equals the ratio of velocities after and before the bounce 

(Ferreira Da Silva 1221): 𝑒# =	−
410
420

  

 
1 Garwin’s model was originally intended for the bounce of an ultraelastic roughball, i.e. a superball. 
 
2 Furthermore, the constant used in his model varies with angle. Since the angle of incidence will change with 
changing spin in this experiment, Cross’ model can’t be used. 
 
3 Check Appendix 1 to see how it is determined 
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 𝑣:# = 	−𝑒# ∗ 𝑣;#		(5)  

The horizontal part of the interaction determines both the final horizontal velocity (𝑣:8) and final 

angular velocity (𝑤:)  

The Case for the Ball with the Backspin: 

For the ball with backspin, the magnitude of the tangential velocity (𝑤𝑟) doesn’t affect the direction 

and type of friction force (Figure 7 and 8). It slides throughout the bounce. 

 

 

 

 

 

 

The impulse created by the friction force (𝐹:) equals the change of linear momentum. 

H 𝐹:
5

/
	𝑑𝑡	 = 𝑚	(𝑣:8 − 𝑣;8) 

𝑣:8 is the final horizontal velocity, 𝑣;8 the initial horizontal velocity and t is the duration of the 

bounce. 

Since 𝐹: = 𝜇𝐹9 and 𝐹9 = 	𝑚𝑔	 + 	𝑚 340
35

, 

H 𝜇𝑚(
𝑑𝑣#
𝑑𝑡 + 𝑔)𝑑𝑡	

5

/
= 𝑚	J𝑣:8 − 𝑣;8K 

𝜇	and m are taken out of the integral since they are constants and m cancels out at both sides 

𝜇 ∫ (
340
35
+ 𝑔)𝑑𝑡	5

/ = 𝑣:8 − 𝑣;8  the integral is separated and performed 

𝜇(∫
340
35
	𝑑𝑡	5

/ + ∫ 𝑔	𝑑𝑡	5
/ ) 	= 𝑣:8 − 𝑣;8             →              𝜇(∫ 𝑑𝑣#	

5
/ 	+ 𝑔𝑡) 	= 𝑣:8 − 𝑣;8    

Figure 7: The Friction Force when v< > wr Figure 8: The Friction Force when 𝑣8 < 𝑤𝑟 
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𝜇(𝑣:# − 𝑣;# + 𝑔𝑡) 	= 𝑣:8 − 𝑣;8   inserting  −𝑒# ∗ 𝑣;#	for 𝑣:# 

𝜇((−𝑒# ∗ 𝑣;#) − 𝑣;# + 𝑔𝑡) 	= 𝑣:8 − 𝑣;8  reorganizing to get: 

𝑣:8 = 𝑣;8 + 𝜇(−𝑣;#(𝑒# + 1) + 𝑔𝑡)												(6) 

The Frictional Force also does work to create angular impulse which equals the change in rotational 

momentum. 

𝑟 ∫ 𝐹:
5
/ 𝑑𝑡 = 𝐼	(𝑤: −𝑤;) , inserting 𝜇𝑚(−𝑣;#(𝑒# + 1) + 𝑔𝑡) for ∫ 𝐹:

5
/ 𝑑𝑡	from the previous part  

𝜇𝑚𝑟(−𝑣;#(𝑒# + 1) + 𝑔𝑡) = 𝐼	(𝑤: −𝑤;)    

𝐼 = 𝑘𝑚𝑟* where k is a constant to be determined (Appendix 1) 

𝜇(−𝑣;#(𝑒# + 1) + 𝑔𝑡) 	= 𝑘𝑟(𝑤: −𝑤;)   reorganizing 

=
>?
(−𝑣;#(𝑒# + 1) + 𝑔𝑡) 	= 𝑤: −𝑤;  reorganizing 

𝑤: = 𝑤; +
𝜇
𝑘𝑟 (−𝑣;#(𝑒# + 1) + 𝑔𝑡)										(7) 

The Case for the Ball with the Topspin: 

 

 

 

 

 

 

 

In the situation depicted in Figure 9, 

𝑣:8 = 𝑣;8 + 𝜇(−𝑣;#(𝑒# + 1) + 𝑔𝑡)												(6) 

𝑤: = 𝑤; +
𝜇
𝑘𝑟 (−𝑣;#(𝑒# + 1) + 𝑔𝑡)											(7) 

Figure 10: The Friction 
Force when 𝑣8 < 𝑤𝑟 

Figure 9: The Friction 
Force when v< > wr 
 

Figure 11: The Friction 
Force when 𝑣8 = 𝑤𝑟 
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Hold true again. 

However, if 𝑣8 = 𝑤𝑟 at some point during the bounce, the ball will start rolling and 𝐹: will be 

zero. The ball won’t slow down anymore. 

In that case: 

𝑟 ∫ 𝐹:
5(
/ 𝑑𝑡	 = 𝐼	(𝑤: −𝑤;)  where 𝑡? 	is the time the ball starts rolling. 

Inserting 𝑚(𝑣:8 − 𝑣;8) for ∫ 𝐹:
5(
/ 𝑑𝑡	 and 𝐼 = 𝑘𝑚𝑟* to get: 

𝑚𝑟(𝑣:8 − 𝑣;8) = 𝑘𝑚𝑟*(𝑤: −𝑤;)    →    (𝑣:8 − 𝑣;8) = 𝑘𝑟(𝑤: −𝑤;)  

Since 41/
?
= 𝑤:	during rolling, 

(𝑣:8 − 𝑣;8) = 𝑘𝑟(41/
?
−𝑤;)  simplifying, 

(1 − 𝑘)𝑣:8 = 𝑣;8 − 𝑘𝑟𝑤; reorganizing, 

𝑣:8 =
𝑣;8 − 𝑘𝑟𝑤;
1 − 𝑘 	(8) 

and due to the 41/
?
= 𝑤:	identity 

𝑤: = 𝑟
𝑣;8 − 𝑘𝑟𝑤;
1 − 𝑘 	(9) 

In the situation depicted in Figure 10, the direction of the friction force is reversed. 

That means: 

−∫ 𝐹:
5
/ 𝑑𝑡	 = 𝑚	(𝑣:8 − 𝑣;8)  →  ∫ 𝐹:

5
/ 𝑑𝑡	 = 𝑚	(𝑣;8 − 𝑣:8) 

and  𝜇(−𝑣;#(𝑒# + 1) + 𝑔𝑡) 	= 𝑣;8 − 𝑣:8 

Reorganizing to get: 

𝑣:8 = 𝑣;8 − 𝜇(−𝑣;#(𝑒# + 1) + 𝑔𝑡)												(10) 

The same process is repeated for the angular velocity: 

−𝑟 ∫ 𝐹:
5
/ 𝑑𝑡 = 𝐼	(𝑤: −𝑤;)  →  𝑟 ∫ 𝐹:

5
/ 𝑑𝑡 = 𝐼	(𝑤; −𝑤:)  

and =
>?
(−𝑣;#(𝑒# + 1) + 𝑔𝑡) = 𝑤; −𝑤:  
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Reorganizing to get: 

𝑤: = 𝑤; −
𝜇
𝑘𝑟 (−𝑣;#(𝑒# + 1) + 𝑔𝑡)											(11) 

 If 𝑣8 = 𝑤𝑟 at some point during the bounce, the ball will start rolling and  

𝑣:8 =
𝑣;8 − 𝑘𝑟𝑤;
1 − 𝑘 			(8) 

𝑤: = 𝑟
𝑣;8 − 𝑘𝑟𝑤;
1 − 𝑘 	(9) 

Hold true again. 

 

In the situation depicted in Figure 11, the ball commences rolling immediately and both the 

horizontal velocity and the angular velocity stays the same. 

 

The derived equations are integrated into Python4 and the theoretical distances are graphed in 

Logger Pro. A theoretical trajectory can be seen in Graph 1. 

 

 
4 The constants and their uncertainties that are used in the code is in Appendix 1, the code itself is in Appendix 2 

Graph 1: The Theoretical Trajectory of the Tennis Ball with a Rotational Speed of 0Hz  
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Experimental Design 

Variables 

Independent Variable: The rotational speed of the tennis ball (Hz). 

Dependent Variable: The distance that the tennis ball travels until its second bounce (m).  

Controlled Variables: The factors that would affect the distance significantly were tried to be 

controlled. The experimental setup for achieving this can be seen in Figure 12.  

 

The initial velocity of the ball was kept at 5𝑚𝑠!" (measured by LoggerPro video analysis) by using 

a pneumatic cylinder fixed parallel to the ground always with the pressure of (6 ± 0.125)𝑘𝑃𝑎 

(Figure 13). However, as the rotational speed of the tennis ball increased, the reaction force 

between the cylinder and the ball increased, slightly changing the magnitude and direction of 

velocity. This effect became more pronounced at higher rotational speeds.  

The initial rotational speed of the ball was adjusted by controlling the rpm’s of the dc motors using 

a L298n DC motor driver. 

The initial height and horizontal distance of the ball were controlled by fixing the spinning 

mechanism to the wooden platform. 

The coefficient of restitution and coefficient of sliding friction were controlled by using the same 

tennis ball in the same tennis court. 

To prevent wind causing any random errors by stirring the trajectory of the tennis ball, the 

experiment was performed in an indoor tennis court. 

To keep the air density relatively constant, the experiment was performed in 4 hours at the same 

place to prevent a significant temperature gradient.  
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The experimental setup consists of three parts: The spinning mechanism, the shooting mechanism, 

and the recording apparatus. 

The Spinning Mechanism 

The annotations of the spinning mechanism can be seen in Figure 14 and 15. The DC motors are 

fixed to the motor towers with duct tape and the motor towers are fixed to the wooden base with a 

glue gun. The DC motors are connected to the L298n DC motor driver which is connected to 

Arduino Uno. The rpm’s of the DC motors are controlled from the Arduino Uno which is controlled 

from the computer by the code written by the author (Appendix 3). The back of the silicone half 

spheres are inserted into the DC motors while their fronts are covered with anti-slip tape to increase 

friction and prevent the tennis ball from falling.  

 

 

Figure 12: The Experimental Setup  

Figure 14: The Spinning Mechanism Annotated in the 
Experimental Setup 

2 Motor Towers 

Figure 15: A Closer Look 
at the Motor Towers  

L298n 
DC Motor 
Driver 

Arduino Uno 

Computer with 
Arduino Installed 

12V Power Source 

2 DC Motors Inserted 
into Silicone Half 
Spheres and Fixed to 
the Towers 

Figure 13: Controlling the Pressure 
via an Air Regulator  
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The Shooting Mechanism 

The annotations of the shooting mechanism can be seen in Figure 16 and 17. The pressure of the 

air coming from the compressor is controlled via an air regulator. The double acting pneumatic 

cylinder is connected to a manual control valve. The pneumatic cylinder is fixed into position by 

using pipe clamps. The pipe clamps are connected to corner braces and the corner braces are 

connected to the metal base which is screwed into the wooden base.  

 

  

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Double Acting 
Pneumatic Cylinder Manual Control 

Valve 

Compressor and 
Air Regulator 

Pipe Clamps 

Corner Braces 
Metal Base 

Figure 16: The Shooting Mechanism Annotated in the Experimental Setup 
 

Figure 17: A Closer Look at the Pneumatic Cylinder 
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The Recording Apparatus 

The annotations of the recording apparatus can be seen in Figure 18 and 19. The tennis ball is 

marked along its circumference with a black board marker to measure its rotational speed. A metal 

ruler is connected to a motor tower and marked every 10cm to be used as a reference length during 

video analysis. The numbers and letter on the paper indicate the supposed rotational speed (7Hz), 

type of spin (t for topspin) and the number of trial (3). A camera filming at 240fps in 1080p is 

attached to a tripod which enables it to oversee the entire trajectory of the tennis ball until its second 

bounce. The position of the tripod is unchanged throughout the experiment. 

 

 

 

 
 
 
The Procedure 
 

1) Prepare the setup as shown in the Figures 14-19. Control that the air regulator shows 6𝑘𝑃𝑎. 

2) Adjust the speed of the DC motors from the computer so that when the ball is launched, it 

has a rotational speed of 4Hz with topspin. The example given in Figure 20 shows how the 

rotational speed can be determined using the black mark on the tennis ball. 

Ruler for Reference 
Length 

Black Board 
Marker 

Marked Tennis Ball 

Paper Indicating 
Trial Number 

Camera Filming 
at 240fps 

Tripod 

My Kind and Helpful 
Medical Doctor Dad 
Recording the Videos 

Figure 18: The Recording Apparatus Annotated in the 
Experimental Setup 
 

Figure 19: The Placement of the 
Camera 
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* First find a frame just after the ball is launched that has a 

horizontal or vertical line. 

* Count the frames that the line takes to become orthogonal to the 

line in the first frame that was chosen. Multiplying that number 

with "
*@/

𝑠 (as the frame rate is 240fps, one frame takes "
*@/

𝑠) 

gives the amount of time needed to complete "
@
𝑡ℎ of a cycle. 

* Multiplying that with 4 gives the time it takes to complete 1 

cycle.  

* Dividing 1 by that number gives the rotational speed of the 

tennis ball. 

 

The rotational speed of the tennis ball shown in Figure 20: "
#
+!-A	∙	C	∙	@

= 10𝐻𝑧  

3) Measure the distance that the ball travels until its second bounce using LoggerPro Video 

Analysis. An example measurement is given in Figure 21. 

*Assign 0.2m to the marked length of 20cm on the ruler. 

*Find the frame in which the tennis ball undergoes its second bounce  

*Measure the distance from the center of the tennis ball to the start of the white line. 

 
 
 
 
 
 
 
 
 
 
 

Figure 20: Measuring the 
Rotational Speed of the 
Tennis Ball 
 

Figure 21: Measuring the Distance that the Tennis Ball Travels Until its Second Bounce 
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4) Take 3 trials using the same process and repeat for the rotational speeds of -12Hz, -10 Hz, 

-7Hz, -4 Hz, 0Hz, 7Hz, 10Hz, 12Hz (the negative sign indicates that the ball has backspin) 

 

Qualitative Observations 

When the ball reached high rotational speeds in backspin and was thrown, it started having a greater 

angle with the horizontal. This effect increased with higher rotational speeds. 

When the ball reached high rotational speeds in topspin and was thrown, it started having a lower 

angle with the horizontal. This effect increased with higher rotational speeds. 

The pneumatic cylinder recoiled after hitting tennis balls with high rotational speeds.  

 

Data Processing 

The theoretical distances that the ball travels are tabulated in Table 1. Their maximums and 

minimums were found using the uncertainties of the constants. The negative sign before rotational 

speed indicates that the ball is going with backspin. 

 

Sample Calculation: 

The theoretical value is from the code (Appendix 2) 

 

Uncertainty: 

 	&(8;DED	F()EG	!&;H;DED	F()EG
*

     0.0*/D!0."IJD
*

= ±0.066𝑚		5 

 
5 The actual values are to 14 decimal places and that is the reason why this calculation seems wrong but isn’t 
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The data from Table 1 is graphed in 

Graph 2. 

 

Backspin region is made blue while 

topspin region is made red for easier 

understanding. 

 

 

Table 1: The Theoretical Distances and Their Absolute 
Uncertainties Corresponding to Their Rotational Speeds 
 
 

Graph 2: The Theoretical Horizontal Distance Versus the Rotational Speed of the Tennis Ball 
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For the backspin region, the ball with around 0Hz and -4Hz is predicted to travel further than a ball 

with no spin. After that, distance that the ball travels is predicted to decrease linearly with 

increasing rotational speed.  

For the topspin region, the balls with rotational speeds between 0-10Hz are predicted to travel less 

than a ball with no spin. This linear decrease is faster as it can be seen from the slopes in the Graph 

1 (-0.012 for topspin and 0.001 for backspin). The balls with rotational speeds exceeding 10Hz 

start rolling during the bounce and therefore acquire a much faster speed leaving the ground. This 

causes them to traverse a much longer distance. In this region, the distance that the ball travels is 

predicted to decrease linearly with increasing backspin faster than the 0-10Hz region (slope of -

0.196 for the above 10Hz region). 

The raw data of the distances that the ball travels corresponding to different rotational speeds are 

tabulated in Table 2 and Table 3.  

 

 

 
 

 

Table 2: The Distances Corresponding to Their 
Rotational Speeds for balls going with Topspin 
 
 

Table 3: The Distances Corresponding to Their 
Rotational Speeds for balls going with Backspin 
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The data from Table 2 and Table 3 are used to construct Table 4. 
 

Sample Calculation: 

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑣𝑎𝑙𝑢𝑒 = 	 5?;()	"	1	5?;()	*	1	5?;()	0
0

  

(!"*.//)KL1(!"*.//)KL1(!"*.//)KL
0

= −12.00𝐻𝑧   0../MD10..CMD10..@MD
0

= 3.542𝑚  

 

Uncertainty: 

	&(8;DED	F()EG	!&;H;DED	F()EG
*

  

(!"*.//)KL!(!"*.//)KL
*

= ±0.00𝐻𝑧     0..CMD!0../MD
*

= ±0.030𝑚 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

 

 

Table 4: The Average Distances Corresponding to Their Average Rotational Speeds with 
Their Uncertainties 
 



 21 

The data from Table 4 is graphed in Graph 3.  

 

 

 

For the backspin region, the data points between -6.95Hz and 0Hz fit the predicted trend with the 

ball covering a greater distance than a ball with no spin and the linear decrease in distance covered 

as the rotational speed increases. However, for the balls with rotational speeds higher than -6.95Hz, 

the distance starts increasing. 

For the topspin region, the data points between 0Hz and 9.52Hz fit the predicted trend with a linear 

decrease. However, there is no sharp rise in distance above 10Hz but instead a sharp drop. 

The data from the Graph 2 and Graph 3 were superimposed in Graph 4 for better comparison and 

explanations of the deviations. Green is the theoretical data, red is topspin, and blue is backspin. 

 

Graph 3: The Horizontal Distance Versus the Rotational Speed of the Tennis Ball 
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As it can be seen from the Graph 4, the experimental and theoretical values agree between the range 

of -6.95Hz and 6.95Hz within the error bounds. 

The deviations at -9.52Hz and -12Hz is caused by the increasing reaction force between the 

pneumatic cylinder and the tennis ball.  

 
When the ball is rotating with backspin, the side of the ball that hits the pneumatic cylinder has a 

tangential velocity pointing downwards. During the impact, that side pushes the pneumatic cylinder 

down. Due to the Newton’s third law of motion, the pneumatic cylinder applies an equal force to 

the tennis ball in the opposite direction. This effect increases as the rotational speed of the tennis 

ball increases. When this additional vertical component of velocity is taken into account, the 

theoretical estimate fits with the experimental results (Graph 5).  

Graph 4: The Horizontal Distance Versus the Rotational Speed of the Tennis Ball, Theoretical and 
Experimental Data Superimposed 
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In Graph 5, the data points of -10Hz and -12Hz were given an additional 0.45𝑚𝑠!" and 0.55𝑚𝑠!" 

vertical velocity components respectively. This addition makes the angle between the tennis ball 

and the ground for the -10Hz ball approximately 5.14° and 6.28° for the -12Hz ball. The reason 

why all the experimental data points are above the theoretical estimates can be explained by the 

same phenomenon. In lower rotational speeds, however, the reaction force has less effect and 

doesn’t create enough vertical velocity component to make the data points deviate significantly 

from the expected results. It causes a systematic error nevertheless. 

When the ball is rotating with topspin, the side of the ball that hits with the pneumatic cylinder has 

a tangential velocity pointing upwards. During the impact, that side pushes the pneumatic cylinder 

up. Due to the Newton’s third law of motion, the pneumatic cylinder applies an equal force to the 

tennis ball in the opposite direction. This effect increases as the rotational speed of the tennis ball 

increases. However, this experimental error alone is not enough to correct the datapoints. The 

Graph 5: The Horizontal Distance Versus the Rotational Speed of the Tennis Ball for the Backspin 
Region with -10Hz and -12Hz Estimates Corrected, -14Hz and -16Hz Removed 
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theoretical estimate only fits the experimental result if the ball is assumed to not start rolling. When 

the additional vertical component of velocity is taken into account and the ball is assumed to only 

slide, theoretical estimate fits with the experimental results (Graph 6).  

 

 
 

 
In Graph 6, the data points of 10Hz and 12Hz were given an additional −0.45𝑚𝑠!" and 

−0.55𝑚𝑠!" vertical velocity components respectively. This addition makes the angle between the 

tennis ball and the ground for the 10Hz ball approximately −5.14° and −6.28° for the 12Hz ball. 

The reason why all the experimental data points are below the theoretical estimates can be 

explained by the reaction force. In lower rotational speeds, however, the reaction force has less 

effect and doesn’t create enough vertical velocity component to make the data points deviate 

significantly from the expected results. It causes a systematic error nevertheless. The reason why 

9.52Hz data point is above the theoretical estimate might indicate that it is an outlier and needs 

further investigation. 

Graph 6: The Horizontal Distance Versus the Rotational Speed of the Tennis Ball for the 

Topspin Region with 10Hz and 12Hz Estimates Corrected, 14Hz and 16Hz Removed 
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Conclusion and Evaluation 

 
The aim of this investigation was to form a mathematical model to describe how the rotational 

speed of a tennis ball affects the distance that it travels when it is launched parallel to the ground 

from a height of 1 meter with a speed of 5𝑚𝑠!" and compare the predictions coming from the 

model with the experimental results. 

 

According to the mathematical model, the maximum distance was achieved with the topspin of 

12Hz. This estimate contradicted with the experimental findings. The contradiction could not be 

resolved by only factoring in the error caused by the reaction force between the pneumatic cylinder 

and the ball. After changing the code to disable rolling during the bounce, the contradiction was 

resolved. This result leads to a significant conclusion that the tennis ball doesn’t roll during the 

bounce. This finding is supported by Rod Cross suggesting the tennis ball grips the surface, 

stretches in horizontal direction and starts vibrating instead of commencing rolling (Cross, “Grip-

slip behavior” 1093). Therefore, the rolling behavior of a tennis ball deserves further investigation 

with higher speed footage.  

 

Removing the option of rolling makes the maximum distance to be achieved with the backspin of 

around (-4.30±0.31)Hz according to the experimental results which also agrees with the 

mathematical model.  

 

The distance increases up to (-4.30±0.31)Hz and decreases linearly after with increasing rotational 

speed for backspin while the distance decreases linearly after 0Hz for topspin.  
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Limitations 

The reaction force between the pneumatic cylinder and the ball at higher rotational speeds causes 

a systematic error. This error can be reduced by working in small rotational speeds or using a faster 

pneumatic cylinder which reduces the impact time (and therefore the impulse). 

 

After hitting balls with high rotational speeds, the pneumatic cylinder recoils due to loosened pipe 

clamps. This causes a random error and can be minimized by tightening the pipe clamps after every 

trial. 

 

The assumption of no viscous torque acting on the tennis ball was validified through measuring the 

rotational speed of the tennis ball right after it gets thrown and right before it hits the ground. No 

difference in rotational speed was observed. 

 

The assumptions of the ball not deforming significantly during the bounce 

and normal force acting through the center of the ball were validified 

through qualitative observation during video analysis (Figure 22). 

 

 

 

The fastest rotational speed that the tennis ball could acquire was 12Hz and fastest horizontal speed 

was 5𝑚𝑠!" due to the limitations of the apparatus. Therefore, the scope of this investigation was 

between -12Hz to 12Hz for a height of 1m and speed of 5𝑚𝑠!" and the mathematical model was 

only tested for this region. In this region, 𝑣8 > 𝑤𝑟 was always true and therefore the effect of 

friction force that acts on the direction of motion described in Figure 10 couldn’t be tested. The 

Figure 22: The Tennis 
Ball During the Bounce 
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accuracy of the mathematical model may also vary depending on the height, speed and the 

rotational speed range. 

Extensions 
 
The effect of friction force that acts on the direction of motion could be investigated by either 

decreasing the launch speed or increasing the rotational speed. 

How launching speed affects horizontal distance travelled may be investigated by keeping the 

rotational speed constant. 
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Appendix 1 – Constants Used in the Mathematical Model 

Rationale for Assuming the Tennis Ball as a Thin Spherical Shell – k and Radius 

The moment of inertia of the tennis ball is calculated by assuming that it is a thin spherical shell. 

The radius of the tennis ball was found by wrapping its circumference by a soft tape measure 

(Figure A). The circumference was measured to be (20.40 ± 0.05)𝑐𝑚. Dividing the measured 

value by 2𝜋 yields the radius of the tennis ball due to 2𝜋𝑟 =	 circumference. The thickness of the 

walls was measured to be (0.60 ± 0.05)𝑐𝑚 by using a ruler after cutting the tennis ball in half 

(Figure B). The thickness of the walls only being %3 of the total radius validates the assumption 

of a thin spherical shell. Therefore, the value of k in 𝐼 = 𝑘𝑚𝑟* is accepted to be *
0
	 (Weisstein). 

 

 

 

 

 

 

𝑅𝑎𝑑𝑖𝑢𝑠 = (*/.@/±/./.)OD
*P	∙	"//

= (0.0325 ± 0.0001)𝑚  

Uncertainty = /./.
*P	∙	"//

= ±0.0001 

The Mass of the Tennis Ball 

The mass of the tennis ball was measured to be (57.0 ± 0.1)𝑔 by using an electronic balance 

(Figure C). 

 

𝑀𝑎𝑠𝑠 = (.J./±/.")Q
	"///

= (0.0570 ± 0.0001)𝑘𝑔  

Uncertainty = /."
"///

= ±0.0001 

Figure A: Measurement of 
the Circumference  

Figure B: Measurement of 
the Thickness of the Walls  

Figure C: Measurement of 
the Mass of the Tennis Ball  
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Air Density (𝑝) 

The value for air density was taken from Engineering Toolbox at 35℃ (as it was the temperature 

in the experiment day) as 1.146𝑘𝑔𝑚!0 

Gravitational Field Strength (g) 

The value for gravitational field strength was taken from Swinburne University of Technology 

COSMOS - The SAO Encyclopedia of Astronomy as 9.81𝑚𝑠!* 

Bounce Duration (t) 

The value for bounce duration was taken from (Cross, “Measurements of the horizontal coefficient 

of restitution for a superball and a tennis ball” 486) as 0.004𝑠 . 

Coefficient of Restitution (𝑒#) 

The tennis ball was dropped from a height and the rebound height was 

measured with LoggerPro video analysis (Figure D).  

𝑚𝑔ℎ; =
"
*
𝑚𝑣;*,     d2𝑔ℎ; = 𝑣; where ℎ; 	is the dropping height and 

𝑣; is the incident velocity 

"
*
𝑚𝑣:* = 𝑚𝑔ℎ: ,				d2𝑔ℎ: = 𝑣: where 𝑣: is the magnitude of the 

velocity right after the bounce and ℎ:	is the rebound height 

Since 𝑒# =
41
42
		and R

*QS1
R*QS2

= 41
42
	,  𝑒# = e

S1
S2

 

𝑒#= e(/.C@*±/.//")D
(".J.J±/.//")D

= 0.604 ± 0.001 

Uncertainty= (/.//"
/.C@*

+ /.//"
".J.J

) ∙ 0.604 = ±0.0001 

Coefficient of Sliding Friction (𝜇) 

Using a similar arrangement in (Cross, “Measurements of the horizontal coefficient of restitution 

for a superball and a tennis ball” 486) 2 identical tennis balls (which were identical with the ball 

Figure D: Measurement of 
the Coefficient of Restitution  
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used in the experiment) were cut in half and glued to a wooden surface. Additional masses were 

glued on top of the wooden surface to increase the Friction Force which decreases the relative 

uncertainty and makes reading the force measurement easier. A Newton Meter was connected to 

the apparatus and the apparatus was dragged at constant speed on the Tennis court (Figure E). At 

that moment 𝐹A);3;HQ	:?;O5;TH = 𝐹TH	5SG	9GU5TH	&G5G? 

Inserting 𝐹A);3;HQ	:?;O5;TH = 𝑚 ∙ 𝑔 ∙ 𝜇 gives V34	678	98'634	:868(
D∙Q

= 𝜇 

 
 
 
 
 

 
The force reading on the Newton Meter was	(11.0 ± 0.5)𝑁 and the total mass of the system 

measured by an electronic balance was (1715.0 ± 0.1)𝑔 which is equal to (1.7150 ± 0.0001)𝑘𝑔. 

Inserting these values and 9.81𝑚𝑠!* for g: 

 
𝜇 = (""./±/..)9

(".J"./±/.///")>Q∙M.I"DA;+
= 0.654 ± 0.030  

 
Uncertainty= ( /..

""./
+ /.///"

".J"./
) ∙ 0.654 = ±0.030 

 
Height 
 
The height of the ball was measured from its geometric center to the ground with a soft tape and 

was found to be (100.00 ± 0.05)𝑐𝑚 which equals (1.000 ± 0.001)𝑚. 

 
 
 
 
 
 

 
 

Figure E: Measurement of the Friction Force  
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Appendix 2 – Python Code for Theoretical Distances 
 

The occasional vertical lines on the upper left of the code is the cursor icon seen in the screenshot 

and doesn’t have something to do with the code. 
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Appendix 3 – Arduino Uno Code for the Spinning Mechanism 
 

 


